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Fluorescence correlation spectroscopy (FCS) has emerged as a powerful technique for measuring low
concentrations of fluorescent molecules and their diffusion constants. In FCS, the experimental data is
conventionally fit using standard local search techniques, for example, the Marquardt-Levenberg (ML)
algorithm. A prerequisite for these categories of algorithms is the sound knowledge of the behavior of fit
parameters and in most cases good initial guesses for accurate fitting, otherwise leading to fitting artifacts.
For known fit models and with user experience about the behavior of fit parameters, these local search
algorithms work extremely well. However, for heterogeneous systems or where automated data analysis is a
prerequisite, there is a need to apply a procedure, which treats FCS data fitting as a black box and generates
reliable fit parameters with accuracy for the chosen model in hand. We present a computational approach to
analyze FCS data by means of a stochastic algorithm for global search called PGSL, an acronym for
Probabilistic Global Search Lausanne. This algorithm does not require any initial guesses and does the fitting
in terms of searching for solutions by global sampling. It is flexible as well as computationally faster at the
same time for multiparameter evaluations. We present the performance study of PGSL for two-component
with triplet fits. The statistical study and the goodness of fit criterion for PGSL are also presented. The
robustness of PGSL on noisy experimental data for parameter estimation is also verified. We further extend
the scope of PGSL by a hybrid analysis wherein the output of PGSL is fed as initial guesses to ML. Reliability
studies show that PGSL and the hybrid combination of both perform better than ML for various thresholds
of the mean-squared error (MSE).

I. Introduction

Fluorescence correlation spectroscopy (FCS) has become an
important tool for investigating the dynamic properties of single
molecules in solution.1-3 It was introduced in the 1970s as a
method for measuring molecular diffusion, reaction kinetics,
and flow of fluorescent particles.4-7

FCS is based on the statistical analysis of fluorescence
intensity fluctuations in solution. It has found widespread
applications in the study of various processes such as diffusion
in solutions and membranes,8 rotational diffusion,9 and singlet-
triplet state kinetics.10 Recent research has proved the power
of FCS as a diagnostic tool in biochemical studies.11

The data in FCS is conventionally modeled with a finite
number of diffusing components and fit with a nonlinear
minimization algorithm like the Marquardt-Levenberg method.12

However, it can generate wrong results for bad initial guesses
or for large number of components. It identifies a region of
good solutions and follows a downward path (gradient) by
accepting only better solutions. In multidimensional solution
spaces, it is likely to identify only local minima. Since FCS
data are by themselves inherently sensitive to changes in
experimental setups,13 the fitting algorithms have to be robust
and accurate in their behavior to avoid unnecessary interpreta-

tions in data analysis.14 Even if the data can be adequately fit
by a small number of diffusing components with minimum
residual error, this may lead to an unphysical description of the
real system under study.

To overcome these drawbacks, we present a data-fitting
algorithm for FCS based on a global search method called
Probabilistic Global Search Lausanne (PGSL). The algorithm
uses random sampling with a probability density function to
locate the global minimum of a user-defined objective function.
Starting with a uniform probability density function over the
entire search space (set of all possible solution points), prob-
abilities are updated dynamically such that a more intensive
search is performed in regions where good solutions are found.
The PGSL algorithm has a distinct advantage over other local
search algorithms such as Marquardt-Levenberg, conjugate
gradient, Newton-Raphson technique, and so forth, in so far
as these require a good initial guess to reach the global
minimum. Tests carried out on complex nonlinear objective
functions such as the Lennard-Jones cluster optimization
problem, indicate that PGSL performs better in terms of
obtaining the success rate and the mean values of the variables
estimated as compared with other probabilistic methods such
as genetic algorithm and simulated annealing.15 Because of its
proven robustness in identifying the global optima, PGSL has
been successfully applied to various areas such as structural
mechanics16 and phase-shifting interferometry.17 In our imple-
mentation in the context of FCS, PGSL finds optimal solutions
for FCS data. Subsequently, we address the mean-squared error
(MSE) of the fit using the PGSL algorithm.
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In what follows, we first present in section II a general
framework by presenting the Experimental Methods and the FCS
parameters of a two-component model with triplet transitions
along with the tests carried out on them. Section III presents
the PGSL algorithm, explains the approach in determining the
global minimum for the physical model, the salient features of
the classical ML algorithm, and a graphical overview of the
internal architectures of PGSL and ML. Section IV presents
two case studies wherein the PGSL is applied first to a standard
two-component system and second to a parameter estimation
with an essential noise contribution. Section V presents a
benchmark test of PGSL with ML and presents a reliability test
performed on PGSL, ML, and on a hybrid concept merging
the PGSL with the ML algorithm.

II. Experimental Methods, Parameters in FCS Data, and
Description of Tests

i. Experimental Methods. A FCS configuration is based on
a standard confocal setup (Figure 1), the excitation laser light
is directed by a dichroic mirror into a high-NA objective, which
focuses the light into the sample. The fluorescence emission is
collected through the same objective (epi-illumination), filtered
by a dichroic beam splitter (BS), and focused onto a pinhole,
so that the excited fluorescence light inside the sample is imaged
onto the pinhole aperture acting as a spatial filter (SF), which
efficiently confines the sampling volume to a diffraction limited
size. After the pinhole, the fluorescence signal is collected
directly by an avalanche photodiode (APD) and processed by a
multiple tau correlator. Our experimental setup was based on
the ConfoCor from Carl Zeiss which is basically a confocal

microscope designed for FCS. The epi-illumination setup was
done using a 40×/1.15 Olympus, Uapo/340 (cover slide
corrected), water immersion objective. As a model two-
component system, we take a mixture where there is a presence
of two fractions, that is, free dye and a labeled primer sample,
M13 primer, labeled with rhodamine green at 10 nM concentra-
tion for the two-component fits.

These dye molecules crossing the detection volume were
excited with an Ar+ laser at 488 nm. Intensity variations of the
fluorescent response were detected across a pinhole of diameter
50 µm with a single photon counting module and processed
with a hardware correlator. Optical power on the sample was
around 50µW for all measurements during a measurement time
of 30 s. A measurement obtained along with its corresponding
fit using PGSL is seen in Figure 2 for a representation of the
two-component case.

ii. Parameters in FCS Data.The autocorrelationG(τ) of
the solute molecules in a small open volume of a dilute solution
is defined as

where〈 〉 denotes the time average andI(t) is the instantaneous
intensity of the fluorescence present in the detection volume
element. A thorough analysis leading to an analytical expression
for a two-component case with multiple numbers of differently
weighted freely and independently moving molecules is given
by18

For a consequent evaluation, we therefore have the following
set of parameters, which need to be estimated for the two-
component case:N, number of molecules in the excitation
volume element;pa, percentage of species 1 in the confocal
volume element;τDa, diffusion time of faster diffusing species
in microseconds;τDb, diffusion time of slower diffusing species
in microseconds;ω, structure parameter for the three-dimen-
sional (3-D) Gaussian volume element which is given by the
experimental setup and is generally fixed;p, fraction of
molecules in the triplet states;τt, triplet correlation time in
microseconds.

Here, we assume that the fraction of molecules in the triplet
state,p and the triplet correlation time,τt are the same for both
species as there would be no additional information in terms of
the photophysics while fitting by having additional parameters
for multiple species. Also, in this study, we set the quantum
yield to one. This expression assumes a 3-D Gaussian spatial
distribution of the probe volume.N is the average number of
molecules present in the detection volume elementV )
π3/2ωxy

2ωz, whereωxy is the transversal extent andωz is axial
extent at which the laser intensity has dropped by 1/e2. ω is
consequently defined asω ) ωz/ωxy, while τD ) ωxy

2/4D denotes
the diffusion time across the sampling region, whereD is the
diffusion coefficient. Thus, the average concentration of the
molecules in the volume element isC ) N/V.

iii. Description of Tests. A Pentium IV 2.4 GHz machine
was used for all tests. The programs were written in C and

Figure 1. Schematic illustration of a typical high-NA objective-based
epi-illumination FCS setup. (BS, dichroic beam splitter; SF, spatial filter
(pinhole); APD, avalanche photodiode). Emitted fluorescence is detected
by an APD and then processed by a multiple tau correlator (Corr).

Figure 2. FCS curve of an M13 primer labeled with RhG at 10 nM
concentration indicating the presence of two components. The dark
lines show the fitted curve to our experimental data (dotted lines). The
residuals shown indicate the fit quality. The two-component fit yielded
the following parameters:N ) 7.2, pa) 0.34,τDa ) 35.20µs, τDb )
201.4µs, ω ) 5, p ) 0.31, andτT ) 2.02 µs.

G(τ) )
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interfaced with MATLAB (The Math Works, Inc.). We choose
to use a simulated data set for the sake of effective comparison
between the two algorithms. The values for the parameters
described as the “original values” in Table 1 areN ) 4.5,pa )
0.35,τDa ) 60 × 10-6 s, τDb ) 5 × 10-4 s, ω ) 5, p ) 0.15,
τT ) 1.2× 10-6 s. Using eq 2, we generate a set of 288 points
logarithmically spaced in the decades of time. For a data set of
these 288 points as in Case Studies I and II, a typical fitting
run with an NSDC of 40 and NFC of 40 took less that 3 s for
output, which demonstrates the flexibility as well as the lesser
computational cost as well. The number of iterations in PGSL
for each of the evaluations is computed as NS (2)× NPUC (1)
× NFC (40) × NSDC (40) × number of parameters (6))
19200. Here, NS) 2 corresponds to an internal default value
to the present version of the PGSL implementation used here.
For a typical run of NFC) 20 and NSDC) 40, the number of
iterations to reach convergence is around 9000 and for NFC)
40 and NSDC) 40 it goes up to 17 000. The only parameters
to be determined for PGSL are the values of the Focusing cycles
and Subdomain cycles. This fixes the number of iterations
required and hence the computation time for a particular run.
The sensitivity of the results obtained increases marginally as
the number of iterations is increased. The table in the following
subsection gives an overview of the quality of the fits obtained
for a synthetic data set for the two-component case.

III. Algorithms

i. PGSL Algorithm. We describe the algorithms in terms of
the parameters of the two-component case here, that is, for the
accurate determination ofN, pa, τDa, τDb, p, andτt. This is done
by computing the global minimum of the least-squares error
objective function,Π, defined by

for K number of sample points and time interval given byτ.
We then utilize the PGSL algorithm, which is based on the

direct global search technique.19 This algorithm operates by
organizing optimizations search through four nested cycles,
namely, Sampling, Probability updating, Focusing, and Subdo-
main. Each cycle has a different role to perform while searching
for the optimum solution. The user first defines the bounds for
each variable that is used with the objective functionΠ. The
method then searches for the optimum value of the objective
function defined inΠ, which is performed by matching the
measuredGdata(τ) with its predicted counterpart based on the
estimated values of the variablesN, pa, τDa, τDb, p, andτt. The
algorithm initially generates random values for each variable

in the Sampling cycle. Assuming equal probability of finding
good solution in the entire search space, the residual errorΠ is
evaluated by substituting all generated solutions in eq 3. This
allows for selecting all points where the residual error is
minimum. Probability-updating and Focusing cycles subse-
quently refine the search in the neighborhood of good solutions.
Convergence to the optimum solution is achieved by means of
the Subdomain cycle. The following are the main terms used
for describing the PGSL algorithm.

Solution Point. A point consists of a value set for each of
the variablesN, pa, τDa, τDb, p, andτt.

Search Space.Search space is the set of all potential solution
points. It is anM-dimensional space with an axis corresponding
to each variable.M denotes the total number of variables. In
the case presented here,M ) 6. The user defines the minimum
and maximum values, commonly known as bounds of variables
along each axis. A subset of the search space is called a
subdomain.

Probability Density Function, PDF. The PDF of a variable
is defined in the form of a histogram. The axis represented by
the variable is discretized into a fixed number of intervals.
Uniform probability distribution is assumed within each interval.
The PDF is used to search within a small neighborhood. Since
PGSL works by global sampling, there is no point-to-point
movement as compared with other random methods.

The function of each cycle is described below:
Sampling Cycle. In the sampling cycle, the number of

samples evaluated in the sampling cycle (NS) are generated
randomly by selecting a value for each variable according to
its PDF. This sampling technique resembles the Monte Carlo
technique. Each point is evaluated, and the point having the
minimum cost, BS (Best Sample), is selected.

Probability-updating Cycle. The sampling cycle is repeated
NPUC (number of iterations in the probability-updating cycles)
times, and after each iteration, the PDF of each variable is
modified using a probability-updating algorithm. This ensures
that the sampling frequencies in regions containing good points
are increased. In the probability-updating algorithm, the interval
containing the value of the variable in BS is located. The
evolution of the PDF for a variable after several sampling cycles
is illustrated in Figure 3.

Focusing Cycle.The probability-updating cycle is repeated
NFC (number of focusing cycles) times, and after each iteration,
the current best point, CBEST, is selected. The PDF is updated
by first locating the interval containing the value of each variable
in CBEST. This probability is uniformly divided into its
subintervals. The widths of these subintervals are calculated such
that the PDF decays exponentially away from it. After subdivi-
sions, intervals no longer have the same width and probabilities
are heavily concentrated near the current best. The evolution

TABLE 1: Large Bound and Small Bounds Results for Various NFC Parameters in PGSL

NSDC) 40 NSDC) 40

original values [large bounds] NFC) 20 NFC) 40 [small bounds] NFC) 20 NFC) 40

N ) 4.5 [0.01-100] 4.508 4.503 [0.1-50] 4.50 4.49
((∆N)/(N) %) (0.2%) (0.08%) ((∆N)/(N) %) (0.1%) (0.06%)

pa )0.35 [0.1-1] 0.364 0.357 [0.1-1] 0.363 0.344
((∆pa/pa) %) (4.3%) (2.1%) ((∆pa/pa) %) (3.8%) (1.6%)

τDa ) 60× 10-6 [1 × 10-8 to 1× 10-4] 64.13× 10-6 62.06× 10-6 [1 × 10-7 to 1× 10-4] 63.87× 10-6 58.49× 10-6

((∆τDa/τDa) %) (6.8%) (3.4%) ((∆τDa/τDa) %) (6.4%) (2.4%)
τDb ) 5 × 10-4 [1 × 10-7 to 1× 10-3] 5.13× 10-4 5.05× 10-4 [1 × 10-5 to 1× 10-3] 5.11× 10-4 4.95× 10-4

((∆τDb/τDb) %) (2.6%) (1.2%) ((∆τDb/τDb) %) (2.2%) (0.9%)
p ) 0.15 [0.01-1] 0.1513 0.1513 [0.1-1] 0.1511 0.149

((∆p/p) %) (0.9%) (0.4%) ((∆p/p) %) (0.7%) (0.3%)
τt )1.2× 10-6 [1 × 10-9 to 1× 10-5] 1.22× 10-6 1.21× 10-6 [1 × 10-8 to 1× 10-5] 1.22× 10-6 1.19× 10-6

((∆τt/τt) %) (2.0%) (0.9%) ((∆τt/τt) %) (2.1%) (0.5%)
MSE f 1.26× 10-6 2.87× 10-7 1.06× 10-6 1.65× 10-7

Π ) ∑
i)1

K

[Gfit(τi) - Gdata(τi)]
2 (3)
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of PDF after several probability-updating cycles is illustrated
in Figure 3. Assume that the value of the variable in the best
solution found in the first probability-updating cycle is Xb1.
The interval containing this value is subdivided into four parts
and is assigned 50% probability. The remaining probability is
distributed to the other intervals according to an exponentially
decaying function. Due to this probability distribution, 50% of
variables in subsequent samples lie within their respective best
intervals. This results in exploration of alternative values of some
variables keeping the values of other variables in the best
regions. Assume that the value of the variable in the best solution
found in the second updating cycle is Xb2. The interval
containing this value is further subdivided (for clarity, intervals
are not shown to scale in the figure). Probability densities
increase enormously due to fine division of intervals after many
probability-updating cycles.

Subdomain Cycle.In the subdomain cycle, the focusing cycle
is repeated NSDC (number of subdomain cycles) times, and at
the end of each iteration, the current space search is modified.
In the beginning, the entire space is searched, but in subsequent
iterations, a subdomain of a smaller width is selected for search.
The size of the subdomain decreases gradually, and the solution
converges to a point. The scale factor is dynamically chosen
such that there is no premature convergence. This is, however,
not the case in ML (see section ii).

Each cycle therefore serves a different purpose in the search
for a global optimum. The sampling cycle permits a more
uniform and exhaustive search over the entire search space than
the other cycles. The probability-updating and focusing cycles
refine the search in the neighborhood of good solutions.
Convergence is achieved by the subdomain cycle.

The parameter study revealed that only the values of the
focusing cycles and subdomain cycles need to be adjusted to
fix the total number of evaluations of the objective function in
hand. This underlines the ease and simplicity of fixing PGSL
parameters.

a. Approaches for Determining Global Minimum. The
selection of an appropriate methodology is the key for successful
data analysis. Before narrowing down to a particular method,
it is imperative to study the topology of the parameter space

for Π. Figure 4 shows a plot forΠ in eq 3 from the experimental
measure of Figure 2 obtained with an M13 labeled with RhG
at 10 nM concentration on a cover glass. This plot is generated
with two sensitive variables, namely,N andτDa, where the values
of N are varied from 0 to 10 andτDa from 1× 10-9 to 1× 103.
This log plot shows the presence of many local minimas and
only one global minimum. There would be many minima for
the entire multiparameter space ofΠ when one considers all
the five variables simultaneously. The figure presented here
considers only two of the sensitive variables for the sake of
display. With traditional analysis, the FCS experimenter often
encounters this situation while fitting experimental data when
multiple solution sets are obtained for repetitive fitting on the
same data set. The choice is then to obtain multiple data sets
from many measurements and to do the cumulative analysis of
the data therein or have multiple fitting sessions on the same
data set with varying good initial guesses.

The proposed PGSL algorithm is ideal for the error function
Π, since no initial guesses are required, and although the bounds
need to be defined, the bounds do not require a difficult
constraint selection.

For instance, for the variables in eq 3 is defined as follows

and

where the maximum and minimum values above represent the
theoretical ranges of values possible for a particular dye
molecule under consideration.

Boundary Sensitivity. Boundary sensitivity is the dependence
of the parameter estimates for the range of values given to the
PGSL algorithm. They are highly flexible and need to be
modified appropriately with the system in hand. We can also
set the lower bounds ofpa andp to zero and get similar results
for the two-component fit with the triplet model here. In case
these parameters are not desired for evaluation, then one could

Figure 3. Illustration of the development of the probability density function of one optimization variable Xi during four nested loops of PGSL.
This schematic summarizes the overall internal architecture of the PGSL.

0 < N e100, 0.1e pa e 1, 1× 10-8 e τDa e

1 × 10-4, 1 × 10-8 e τDb e 1 × 10-4, 0.01e p e 1

1 × 10-8 e τt e 1 × 10-5 (4)
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choose the no triplet or the one-component model accordingly.
The structure parameterω is fixed in the analysis.

b. Mean Squared Error (MSE) of Fit in PGSL. It is desired
for a fitting algorithm that it take into account the error of
individual points.20 We utilize the simple definition of MSE to
evaluate the quality of fit in PGSL here.

This value measures the difference between the fitted function
Gfit(τ) and the experimental dataGdata(τ) at every time interval
τ, weighted by length of data pointsK. In Table 1, we see the
performance of PGSL under various Focusing cycles (NFC) for
the six parameters of the two-component case. The fitted values
and also the relative percentage errors with respect to the initial
original values are presented here. The values presented are a
statistical value obtained after running the algorithm for 100
times. The choice of appropriate bounds also influences the MSE
as seen in Table 1.

ii. Marquardt -Levenberg Algorithm. The ML algo-
rithm12,21 is briefly described in this section and is explained
with regard to the two-component equation in eq 2 written in
terms of the parameteru

where,u1, u2, u3, u4, u5, andu6 the elements ofu, representN,
pa,τDa, τDb, p, andτt, respectively. To obtain any of the elements
in u, we must calculate the residual error21 E(u)

for K number of sample points and the corresponding time
interval given byτi and wheredi is the measured value atτi.

If (u)l is the initial guess for the parameter setu, the ML
iteration step is given by

whereJ(u) is the Jacobian matrix, which is defined as

The parameterλ is dynamically adjusted during the course
of minimization wherel is the current iteration andl + 1 is the
next iteration.T is the transpose operator andI is the identity
matrix. The iteration process continues until some pre-specified
termination criterion has been met, such as a given change in
the value of the parameteru or a limit on the number of
iterations.

Used in this way, the ML algorithm allows for computing of
the optimal parameteru. We use the ML implementation
available in the “Optimization Toolbox” in MATLAB with no
changes in the default values for the various internal parameters
described therein.

iii. Illustration of the Internal Architectures of PGSL and
ML. PGSL has several interesting features not similar to other
algorithms. First, it works by global sampling, thereby avoiding
point-to-point improvement in a region around a current point.
Second, it uses histograms for the PDFsa discontinuous
function with multiple peaks. This allows fine control over
probabilities in small regions by subdividing intervals. Third,
the shape and form of the PDF can be changed by subdividing
intervals as well as by directly increasing the probabilities of
intervals. This is different from the normal practice of changing
the standard deviation in other methods.

Figure 4. Magnitude of error for objective functionΠ defined in eq 3. The log plot shows the presence of several minima close to one global
minimum for the choice of two parameters only for our two-component model.

MSE )
1

K
∑
i)1

K

[Gfit(τi) - Gdata(τi)]
2 (5)

G(u,τ) ) 1 + 1
u1

(1 + u5

1 - u5
) exp( - τ

u6
) ×

[( u2

1 + τ
u3

) 1

x(1 + τ
ω2u3

)
+ (1 - u2

1 + τ
u4

) 1

x(1 + τ
ω2u4

)] (6)

E(u) ) ∑
i)1

K

(G(u,τi) - di)
2 (7)

[J((u)l)TJ((u)l) + λI ]((u)l+1 - (u)l) ) -J((u)l)TE((u)l) (8)

J(u) ) [∂E1(u)

∂N

∂E1(u)

∂pa

∂E1(u)

∂τDa

∂E1(u)

∂τDb

∂E1(u)

∂p

∂E1(u)

∂τt

∂E2(u)

∂N

∂E2(u)

∂pa

∂E2(u)

∂τDa

∂E2(u)

∂τDb

∂E2(u)

∂p

∂E2(u)

∂τt

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

∂EK(u)

∂N

∂EK(u)

∂pa

∂EK(u)

∂τDa

∂EK(u)

∂τDb

∂EK(u)

∂p

∂EK(u)

∂τt

]
(9)
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PGSL therefore works directly on the solution search space
and does not seek any gradients for approaching the global
minima. This key feature enables PGSL to generate an optimal
solution set for any noise level by avoiding getting trapped into
local minima irrespective of the complexity of the error objective
function (see parts a-e of Figure 5).

Whereas a local search technique like the ML method finds
good solutions using an exhaustive search over a constrained
space provided, they are given good initial guesses. It is therefore
a nontrivial task to compare two different categories of
algorithms wherein their individual internal architectures differ
as markedly as those seen here (see parts f-j of Figure 5).

IV. Case Studies

i. Case Study 1: PGSL Applied to a Two-Component
System of Interacting Fluorophores.On the left-hand side of
Table 1, the bounds are varied to the maximum extent as
permissible by the parameters of interest for the case of large
bounds. This clearly shows the strength of PGSL in generating
acceptable solutions with no initial guesses for arbitrarily large
bounds.

On the right-hand side of Table 1, we see the performance
of PGSL under various focusing cycles (NFC) with small
bounds as compared with the previous case. The differences
are mainly for the bounds in the various diffusion times for the

Figure 5. Illustration of basic differences between PGSL and ML. Points are randomly generated using a PDF in PGSL. Probabilities are increased
in regions where good solutions are found: (a) a functionf(x) in a single variable, (b) a uniform PDF, (c) a PDF with higher probabilities in regions
containing good solutions, (d) evolution of the PDF into regions with better solutions and the subsequent exponential decay of the PDF, and (e)
search space progressively narrowed by converging to points in a subdomain of smaller size centered on the best point. The ML operates on the
premise of intense searching in (f) initial guesses for two cases here considered by the seeking the minimum of the function, (g) the step size (s)
is chosen in the direction of steepest descent, (h) chosen in the direction of steepest descent iteration continues towards the minimum, (i) point
updated in the direction of the slope until minimum is reached, and (j) “stop” when the function hits the minimum value possible.
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model under consideration here. We see an increase in the
sensitivity of the obtained parameters.

The MSE is different for the various cases and gives the
quality of fit for every particular choice of NFC and NSDC.

We have good solutions for both high and low required
accuracies. The overall setting of the NSDC being 40 and an
NFC of 20 or 40 provides optimal fits here. These results were
also confirmed by testing them on several different models as
well.

ii. Case Study 2: PGSL Applied to Parameter Estimation
with Noisy Data. FCS is susceptible to various noise sources
such as intrinsic photon shot noise dependent on the average
count rate, excitation power instabilities, Raman scattering, and
background fluorescence.22-24 Also, depending on the type of
individual setups or application (two-photon or intracellular
systems) at hand, the contribution of various noise sources
leading to improper fitting is another source of systematic error
leading to erroneous interpretation of the obtained data.

In our context of addressing fitting artifacts especially in noisy
data, we present the main influence of averaging noise here.
The following measurement (Figure 6) was done on a 3 s
measurement time interval on the M13-RhG sample as before
at 10 nM concentration. The data mainly contains the overall
effect of shot noise (governed by Poisson statistics) and

averaging noise (for the long lag times during the finite
measurement intervalT).

We clearly see in Table 2 that the values obtained for ML
are not satisfactory forτDa, τDb, and τt for this particular fit
here, although the residuals look satisfactory. It is evident that
the ML has converged to a wrong minimum in the six-parameter
space here. This is an illustration, where the experimenter has
to refit the data with varying initial guesses and bounds until a
good fit is obtained. For this simple case, it is possible to obtain
better results for ML by fixing the faster diffusing parameter
(τDa) for the standard dye label attached by undertaking
calibration measurements on the setup used. Therefore, with
good initial guesses and prior knowledge of system behavior,
ML does perform very well. However, in cases for measure-
ments in, for example, living cells where additional noise terms
are also an issue to be considered,25 the very choice and
reliability of good initial guesses would be a nontrivial task.

V. Benchmark Tests between PGSL and ML

In this section, we benchmark and evaluate the performance
of PGSL and ML for the objective function defined in eq 3.
This is done by obtaining the best MSE for three different
threshold values in both the situations.

i. Description of Tests and Results in PGSL vs ML. PGSL
Algorithm. It is run for two different cases for large and small
bounds (as in Table 1) for the given simulated data. The initial
seed values for starting the solution search are randomly varied
for each iteration for a fixed NSDC of 40 and an NFC of 40.
This ensures that a new random number starts the global search
process in the solution space for every iteration.

ML Algorithm. The initial guesses for the two sensitive
parameters,N and τDa, are automatically generated by the
correlogram itself. The initial guess forN follows from the
simple relationG(τ f 0) ) 1/N, while for τDa the time value
corresponding toG(τDa) ) 1/2G(0) is chosen. For 100 runs, the

Figure 6. Fitting of experimental FCS data with PGSL and the
Marquardt-Levenberg algorithm: (a) the experimental data with the
fits in ML and PGSL with eq 2, (b) the residuals using PGSL, and (c)
the residuals using the ML algorithm.

Figure 7. Mean-squared error plots for the data evaluated comparing the performances of PGSL (dark lines) and ML (dotted lines) for (a) large
bounds and (b) small bounds.

TABLE 2: Comparison of PGSL and ML for a Noisy
Experimental Data Set

N pa τDa (µs) τDb (µs) p τt (µs) MSE

30 s
(ref)

PGSL 7.2 0.34 35.20 201.4 0.31 2.02 4.32× 10-6

3 s PGSL 5.56 0.40 20.6 151.9 0.5 1.6 7.5× 10-4

3 s ML 5.52 0.54 192.3 11.2 0.28 1.33 4.4× 10-4
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initial values are randomly varied around the above chosen mean
value so that we have a different start value at each iteration
for τDa. For τDb, the value chosen is twice that of theτDa. The
triplet fractionp is chosen at 10% while forτt a typical value
of 1 µs is given as the initial guess value.

Hybrid Algorithm. We further explore the possibility of
combining the mutual abilities of PGSL and ML and call it a
hybrid. Here, the output of PGSL is fed as an initial guess to
ML, and the resultant hybrid performance is evaluated here as
well.

After performing 100 runs for varying guesses for ML and
by varying the initial random value for PGSL, we obtain the
varying MSE for large and small bounds can be seen again in
Figure 7.

We see that PGSL outperforms ML consistently in terms of
the MSE throughout. This is further summarized in terms of
the success ratio in Figure 8.

The success ratio is defined as the percentage of iteration
steps which gives the MSE below the predefined threshold.

In the bar graphs, we have fixed three threshold values for
the MSE. For each iteration, in all the three cases, the fit
generates a particular value of the MSE. The sensitivity of our
iterations was evaluated by checking on the various MSE
thresholds. For a MSE threshold value such as 1× 10-7, which
corresponds to a better quality of the fit obtained, we see that
the success ratio is lower as compared with the other two cases.
Correspondingly, we obtain a higher success ratio when we
choose to lower our fit quality (as for an MSE threshold of 1×
10-3).

For both large and small bounds, we see that PGSL
outperforms ML throughout and their corresponding hybrid
approach moves toward the limit of performance as that of
PGSL. These tests conclusively prove that PGSL is a robust
search technique that performs well in spaces with multiple local
minima.

Because of the generality of the procedures discussed here,
we believe that PGSL is useful for various FCS fitting models.
Simple guidelines leading to parameter adaptation as seen above
depending on the models and also on the physical systems under
study would lead to even better convergence in PGSL. This
would then result in faster parameter retrieval for large data
sets as in assays.26 Also, for highly heterogeneous systems with
multiple diffusing species, PGSL would provide a bias-free
fitting of the data for the model chosen on hand since it would

always generate acceptable solutions for the chosen model
without the need for a priori user knowledge of the physical
system.

VI. Conclusions

To conclude, we have described a novel stochastic data
analysis concept applicable to the determination of fitting
parameters in FCS experiments. For the two-component case,
the FCS parameters are determined with high precision by the
application of this algorithm. The fitting values are given the
lower and upper bounds with no initial guesses thereby giving
the experimentalist the confidence in data validation when
experiments are to be planned requiring the application of
various models. It is therefore useful in experimental situations
wherein accurate determination of parameters with no fitting
artifacts from various physical models is also a prime criterion.
We also determine the quality of the fit from the MSE analysis.
Statistical studies further demonstrate the capability of the
method to estimate the fit parameters with greater confidence
along with existing standard gradient-based methods. The
robustness of PGSL on noisy experimental data for parameter
estimation is also shown. Therefore, PGSL appears to be a viable
tool for unbiased parameter retrieval of FCS data.

Acknowledgment. We would like to thank Benny Raphael
and Per Thyberg for valuable discussions and suggestions. We
also acknowledge the positive feedback of one of the reviewers
toward the effective presentation of this research. This research
is partly funded by the Swiss National Science Foundation.
Program Availability: The PGSL programs are available free
of charge either directly from the authors (e-mail or conventional
mail) or can be downloaded from the laboratory website: http://
lob.epfl.ch/page58512.html.

References and Notes

(1) Magde, D.; Webb, W. W.; Elson, E.Phys. ReV. Lett. 1972, 29,
705.

(2) Magde, D.; Elson, E. L.; Webb, W. W.Biopolymers1974, 13, 29.
(3) Magde, D.Q. ReV. Biophys.1976, 9, 35.
(4) Aragon, S. R.; Pecora, R.Biopolymers1975, 14, 119.
(5) Ehrenberg, M.; Rigler, R.Q. ReV. Biophys.1976, 9, 69.
(6) Ehrenberg, M.; Rigler, R.Chem. Phys.1974, 4, 390.
(7) Magde, D.; Elson, E. L.Biopolymers1978, 17, 361.
(8) Pick, H.; Preuss, A. K.; Mayer, M.; Wohland, T.; Hovius, R.; Vogel,

H. Biochemistry2003, 42, 877.
(9) Ehrenberg, M.; Rigler, R.Chem. Phys.1974, 4, 390.

Figure 8. Reliability study of obtaining the best mean-squared error for the data is seen in the bar plots comparing the performances of PGSL, ML,
and their hybrid: (a) large bounds and (b) small bounds. PGSL outperforms ML and results in a better MSE value, indicating better fit quality.

Stochastic Approach to Data Analysis in FCS J. Phys. Chem. A, Vol. 110, No. 37, 200610681



(10) Widengren, J.; Mets, U.; Rigler, R.J. Phys. Chem.1995, 99, 13368.
(11) Cluzel, P.; Surette, M.; Leibler, S.Science2000, 287, 1652.
(12) Marquardt, D. W.J. Soc. Ind. Appl. Math.1963, 11, 431.
(13) Enderlein, J.; Gregor, I.; Patra, D.; Fitter, J.Curr. Pharm.

Biotechnol.2004, 5, 155.
(14) Hess, S. T.; Webb, W. W.Biophys. J.2002, 83, 2300.
(15) Raphael, B.; Smith, I. F. C.Appl. Math. Comput.2003, 146, 729.
(16) Robert-Nicoud, Y. R. I.; Raphael, B.; Smith, I. F. C.J. Comput.

CiV. Eng.2005, 19, 239.
(17) Patil, A.; Raphael, B.; Rastogi, P.Opt. Lett.2004, 29, 1381.
(18) Krichevsky, O.; Bonnet, G.Rep. Prog. Phys.2002, 65, 251.
(19) Masri, S. F.; Bekey, G. A.; Safford, F. B.Appl. Math. Comput.

1980, 7, 353.

(20) Wohland, T.; Rigler, R.; Vogel, H.Biophys. J.2001, 80, 2987.
(21) Aster, R.; Borchers, B.; Thurber, C.Parameter Estimation and

InVerse Problems; Academic Press: Amsterdam, The Netherlands, 2004;
p 184.

(22) Koppel, D. E.Phys. ReV. A 1974, 10, 1938.
(23) Qian, H.Biophys. Chem.1990, 38, 49.
(24) Kask, P.; Gunther, R.; Axhausen, P.Eur. Biophys. J. Biophys. Lett.

1997, 25, 163.
(25) Schwille, P.; Haupts, U.; Maiti, S.; Webb, W. W.Biophys. J.1999,

77, 2251.
(26) Eggeling, C.; Berger, S.; Brand, L.; Fries, J. R.; Schaffer, J.;

Volkmer, A.; Seidel, C. A. M.J. Biotechnol.2001, 86, 163.

10682 J. Phys. Chem. A, Vol. 110, No. 37, 2006 Rao et al.


